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Abstract

We compute the first integrals of the Euler–Lagrange equations associated to actions of curva-
ture energy functionals on suitable spaces of curves in real space forms. Then we obtain closure
conditions for critical points fully immersed in the three-sphere and apply the results to specific
functionals of geometric interest.
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1. Introduction

We consider the variational problem associated to functionals of the form�(γ) =∫
γ

P(κ) ds (curvature energy functionals) when acting on suitable spaces of curves in a
Riemannian manifold. Hereκ denotes the curvature of a curveγ andP(κ) is a smooth
function. The geometric importance of minimizing functionals of this type defined on a
space of curves in the three-dimensional Euclidean spaceR3, was pointed out by Blaschke
in his book on Differential Geometry[8], where it is referred to as Radon’s problem. A
more modern reference can be found in the book[16], where the problem is used as a
strong motivating example within a more general framework. Apart from its own intrinsic
interest, this kind of functionals have a considerable number of applications ranging from

∗ Corresponding author. Tel.:+34-94-601-2519; fax:+34-94-601-2516.
E-mail addresses:mtparolj@lg.ehu.es (J. Arroyo), mtpgabeo@lg.ehu.es (O.J. Garay), mtpmegoj@lg.ehu.es
(J.J. Menćıa).
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the construction of mathematical models in Physics to the study of higher dimensional
variational problems in submanifolds. Thus, to cite just a few examples, one has that the
dynamics of a class of relativistic particles may be described on the basis of actions de-
fined byP(κ) = aκ + b, a, b ∈ R (see[14,25]and the references therein). Also, a classical
example is provided byP(κ) = κ2. In 1742, D. Bernoulli posed the extrema of

∫
γ

κ2 ds as
a model for plane elastic curves, which were later classified by L. Euler in his 1744 book
on the Calculus of Variations. Much more recently, the sameelasticamodel has been ex-
tensively examined in the context of a general Riemannian manifold under different points
of view [10,17,19–21,24]. To give just one more example, we mention here the critical
points of energies given byP(κ) = κr (usually called (free)r-elastic curves or hyperelas-
tic curves) in spheres. They have been employed in connection with the Chen–Willmore
functional[11,12] to furnish reduction methods in constructing Chen–Willmore submani-
folds [2,5,7,26], and to study related conformal string theories[6]. Effectiveness of these
methods is based on the ability to explicitly determine hyperelastic curves in spheres.
While examples of closed hyperelastic curves inS3 with constant curvatures were given
in [5], we will obtain in Sections 5 and 6closed hyperelastic curves with non-constant
curvature.

In Section 2we give the Euler–Lagrange equations corresponding to the actions of
�(γ) = ∫

γ
P(κ) ds on curves in real space forms. They are not really new since several

special cases had been previously computed by using different approaches (see remark af-
terProposition 2). Expressing them in terms of the Riemannian invariants of the curve, one
can easily conclude that the dimension of the ambient space must be at most three. Inspired
in the Langer and Singer’s work on the Kirchhoff elastic rod[23], in this section we also
obtain by geometrical means the first integrals of the Euler–Lagrange equations of curvature
energy functionals. Ideally, one would like to explicitly integrate them if possible in order to
completely determine the critical points. The second variation formula has been computed
in [1]. It is a complicate expression which can be simplified in some particular cases[4].

From the geometric point of view one of the most interesting problems is the existence
of closed critical points. In this paper, one of our main concerns will be the study of the
closed critical curves which are fully immersed in the three-sphere. Thus inSection 3we
shall establish conditions under which curves inS3 corresponding to periodic solutions
of the Euler–Lagrange equations close up and then, the subsequent sections are devoted to
apply the results previously obtained to concrete examples of special geometric significance.
Curves in the two-sphere were considered in[4]. The work we develop here is a natural
continuation of it and will show that there are significative differences between the two-
and three-dimensional cases.

In Section 5we considercurvature energyfunctionals of the typeFr(γ) = ∫
γ

κPr ds

acting on curves of the three-dimensional sphereS3. This seems to be a natural choice
since there are no closed (free) hyperelastic curves inR3 [1]. If r = 0, critical points are
simply geodesics. Ifr = 1,F(γ) = ∫

γ
κ is thetotal curvaturefunctional and its only closed

critical points are the horizontal lifts, via the Hopf map, of m-covered closed curves in
S2(1/2) whose enclosed area satisfies a suitable condition[2]. As a consequence, there are
no critical points in the two-dimensional sphere. Forr = 2, F2(γ) = ∫

γ
κ2 ds is nothing

but the classical Bernoulli’selasticafunctional which has been extensively studied in the
literature as we mentioned before. In this section we completely determine the space of
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closedelasticaein S3. It can be parameterized (modulo isometries and multiple covers
of the curves) in the plane region̄A ∩Q2, whereA = {(x, y); x2+ y2 < 1/2, 0 < x and
y < −(1/2)} (seeFig. 5). Points in the upper border of this region correspond to closed
(free) elastic curves inS2 (closed elastic curves inS2 had been classified in[20]). Points in
the lower border of̄A ∩Q2 correspond to closed elastic helices fully immersed inS3 (we
use the termhelicesfor curves with non-null constant Frenet curvatures) which are totally
describe inSection 5.1 [5]. Points inside the regionA ∩Q2 correspond to closed elastic
curves fully immersed inS3 with non-constant curvature. Ifr is any natural number greater
than two, a explicit construction of closed examples is much more difficult. By using a similar
method to that of previous cases, one can also determine in this case the closed hyperelastic
helices. However, existence of closed non-constant curvature hyperelastic curves inS3(1)

should not be taken for granted. For instance, there are no closed hyperelastic curves in
S2 for r > 2 [4]. Although we can prove inSection 6that for any natural numberr > 2
there exist closed critical hyperelastic curves inS3 with non-constant curvature, a general
explicit formula for their curvatures seems to be elusive for the moment (with the exception
of some particular low values ofr, for which some reductions in the ODE degrees may be
possible).

For another application of the general computations, we consider inSection 4the family
of functionals�λ(γ) = ∫

γ
(κ2+ λ)1/2, 0≤ λ acting on curvesγ of S3(G), the three-sphere

of curvatureG. Whenλ = G this functional is nothing but that thetotal curvatureof γ in
R4 constrained to act on spherical curves. This type of functionals have also appeared in
the study of a model of relativistic particle with maximal proper acceleration[25]. From
the perspective of the existence of closed critical curves, the most interesting case is when
λ ∈ (0, G). Being this the case, we completely determine inSection 4.2, the space of
closed curves inS3(1) which are critical points of�λ. This time, it can be parameterized
(modulo isometries and multiple covers of the curves) in the plane regionĀ ∩Q2, where
now A = {(x, y); x < 0 and−(1/4x

√
1− λ) < y < 1/2} (seeFig. 4). Points in the upper

border of this region correspond to closed critical curves inS2(1) and have been studied
in [4]. Points in the lower border of̄A ∩Q2 correspond to closed critical helices fully
immersed inS3(1) which we describe inSection 4.2, while points inside the regionA ∩Q2

correspond to non-constant curvature closed critical curves fully immersed inS3(1).

2. Euler–Lagrange equations in space forms

We first consider generalcurvature energy functionalsacting on spaces of curves satisfy-
ing given boundary conditions in ann-dimensional Riemannian manifoldMn with metric
〈 , 〉, Levi–Civita connection∇, and curvature tensorR. We shall denote by�pq the space
of curves inMn, satisfying the following conditions: (1)γ : I = [0, 1]→Mn, γ ∈ C4(I);
(2) γ is a immersed curve inMn, that is, dγ/dt �= 0; (3) they all have the same ends,
γ(0) = p, γ(1) = q,∀γ ∈ �pq, wherep, q ∈Mn; (4) there is a well defined normal vector
onγ (for instance, d2γ/dt2 �= 0 if n > 2, orn = 2 andM2 is orientable). We takeP(t) aC∞
function and consider the followingcurvature energy functional�(γ) = ∫

γ
P(κ) acting on

�pq. For a given curveγ in �pq, we denote byT(t), N(t) the unit tangent and normal vectors,
respectively. Alsoκ2(t) = ‖∇T T‖2 will be the squared curvature andκ will be the oriented
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curvature ifγ is a curve in an oriented surfaceM2 and the positive root ofκ2 otherwise. As
usual the arclength parameter is represented bys ∈ [0, L], L being the length ofγ. Let us
take a curveΓ(w) in �pq passing throughγ, that isΓ(w, t) = γw(t) : (−ε, ε)× I→Mn is
a variation ofγ in �pq with γ(0, t) = γ(t), whose variation vector field along the curveγ is
given byW = W(t) = (∂γ/∂w)(0, t). The restriction of acurvature energy functionalto a
variation is denoted by the same letter,�(w) = �(γw(t)). To compute the first derivative
of �(w) we shall use the following notation:

K= P ′(κ) ·N, J = ∇TK+
(
2κP ′(κ)− P(κ)

) · T,

E=∇TJ+ P ′(κ) · R(N, T)T, (1)

whereP ′(κ) = dP/dκ. Then using Lemma 1 and Proposition 2.1 of[20], the firstFrenet
formula, ∇T T = κN, and integrating by parts one can obtain[1].

Proposition 1. LetΓ(w, s) = γw(t) be a variation of aγ by curves in�pq. Under the above
conditions and notation, the following formula holds:

d

dw
�(w)|w=0 =

(∫ L

0
〈E, W〉ds

)
+ B[W, γ]L

0 , (2)

where the boundary term is given by

B[W, γ]L
0 = [〈K,∇T W〉 − 〈J, W〉]L

0 . (3)

Now, we may see� acting on spaces of curves which, in addition to the defining condi-
tions of�pq, satisfy also a suitable set of boundary conditions. We first consider�̃pq, the
subspace of curves in�pq which also verify:(dγ/ds)(0) = e1, (dγ/ds)(1) = e2, where
e1 ande2 are two fixed tangent vectors toMn at p andq, respectively. The following com-
putations might be equally applied, for instance, to the case in which� acts on either�, the
space of smooth closed curves ofMn, or to �̂pq, the space of curves with “clamped” ends
(that is, with fixedFrenet frameat each end). In such cases, the above boundary term drops
out. Thus a critical point of� in such spaces will be characterized by theEuler–Lagrange
equationE = 0, in other words by

∇2
T (P ′(κ) ·N)+ ∇T ((2κP ′(κ)− P(κ)) · T)+ P ′(κ) · R(N, T)T = 0. (4)

From now on, we restrict ourselves to the case in which our manifoldMn is a simply
connected real space form of constant curvatureG: Mn(G). The symmetry of these spaces
will simplify the Euler–Lagrange equationto the point where some reductions are possible.
We write down theFrenet equationsas:∇T T = κ · N, ∇T N = −κ · T + τ · B, ∇T B =
−τ ·N + η, whereτ stands for the second Frenet curvature (torsion) andη is perpendicular
to the bundle spanned by{T, N, B}. Let us denote byH any of the following spaces of
curves inMn(G) : �̃pq, � or �̂pq. Then, by substituting theFrenet equationsinto the
Euler–Lagrangeequation (4), comparing the components of{T, N, B, η} and making use
of Erbacher’s theorem on the reduction of codimension in a real space form[13], one gets
the following proposition.
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Proposition 2. Let � be a curvature energy functional acting onH. Thenγ is a critical
point of�, if and only if

(κ2− τ2+G)P ′(κ)+ d2P ′(κ)

ds2
= κP(κ), (5)

2
dP ′

ds
τ + P ′(κ)τs = 0, (6)

P ′(κ) · η = 0, (7)

whereκs,τs denote derivative with respect to the arclength parameters. Moreoverγ must
lie fully in either a two-dimensional or a three-dimensional totally geodesic submanifold
of Mn(G).

Several versions of the above Euler–Lagrange equations are known in the literature. For
instance, they were found for curves inR3 in [18]; for curves in Lorentzian ambient spaces
in [25]; and for curves in Riemannian space forms in[1] (see also[16]).

From the above Proposition, we may assume thatγ is a curve inMn(G) with n = 2, 3. If
P ′′(κ) = 0, then this case basically corresponds either to the length or to the total curvature
functionals and it has been studied in[1,3]. AssumeP ′′(κ) �= 0. The next proposition
gives a frame adapted to our problem, which will allow us to use the Noether argument
relating symmetries of� to constants of motion alongγ to obtain the first integrals of the
Euler–Lagrange equations[1].

Let γ : [0, 1]→ M3(G) be a immersed regular curve in a three-dimensional real space
form of constant sectional curvatureG. A vector fieldW is calledKilling alongγ, if for
any variation in the direction ofW we have

∂v

∂w
= ∂κ

∂w
= ∂τ

∂w
= 0. (8)

Now assumeκs �= 0. By using Lemma 1 of[20], one can check thatW is a Killing field
alongγ, if and only if

〈∇T W, T 〉 = 0, (9)

〈∇2
T W, N〉 +G〈W, N〉 = 0, (10)〈

1

κ
∇3

T W − κs

κ2
∇2

T W +
(

G

κ
+ κ

)
∇T W − κs

κ2
GW, B

〉
= 0. (11)

Moreover, it was proved in[20] that a Killing field along a curveγ in a real space form
M3(G) is the restriction toγ of a Killing field onM3(G). Define a new vector fieldI = K×T

onγ, then from(1) we have

J× T = ∇T (K× T), (12)

I = −P ′(κ) · B. (13)

Thus, one gets the following proposition.
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Proposition 3. Letγ : [0, 1]→M3(G) be a immersed curve in a real space form of con-
stant sectional curvatureG which is a critical point of� (under any boundary conditions).
Assume that(dP ′(κ)/ds) �= 0 alongγ, then the vector fieldsJ andI, defined in(1) and
(13), respectively, are Killing fields alongγ (and therefore, they are the restriction toγ of
Killing fields onM3(G)).

Proof. From the definition ofI and the Frenet equations, the tangent part of∇TI is ob-
viously zero, which gives(9). The component inN of ∇2

TI is (dP ′/ds)τ + (d(P ′τ)/ds),
which is zero because of(6). This fact and(13)gives(10). Finally takingW = I, the term
on the left of(11) is (d/ds)[(1/κ)(P ′τ2− (d2P ′/ds2)−GP′)] − κ(dP ′/ds), which is also
zero as a consequence of(5). This gives(11) and shows thatI is a Killing field onγ. On
the other hand, from the second and third equations of(1), we see that sinceγ is a critical
point

J = (κP ′(κ)− P(κ)) · T + dP ′(κ)

ds
·N + τP ′(κ) · B, (14)

∇TJ = −GP′(κ) ·N, (15)

which immediately gives(9). Now, the component inN of ∇2
TJ is −G(dP ′/ds), which

in combination with(14) shows(10). Finally, we see from(15) that the component inB
of ∇TJ is zero. By using the Frenet equations and(6) one can see also that the binormal
component of∇3

TJ is also zero. Moreover the binormal component of∇2
TJ is −GτP ′,

which together with(14)gives(11). Therefore,J is also a Killing field onγ. �

Now, if γ happens to be a critical point of� (under any boundary conditions), then
standard arguments imply thatE = 0 onγ. The variation formula continue to hold when
L is replaced by any intermediate valuet ∈ (0, L) and, thus, the first variation formula(2)
reduces to

d

dw
�(γ)|w=0 = B[W, γ]t

0. (16)

Therefore, for any Killing fieldW onM3(G), we haveB[W, γ]t
0 = 0,∀t ∈ [0, L]. Thus we

see from(3) that〈K,∇T W〉 − 〈J, W〉 is constant onγ. Then usingProposition 3, we have

〈K,∇TI〉 − 〈J, I〉 = c, (17)

onγ, wherec ∈ R is a constant. Combining(1) and〈I,K〉 = 0, we have

〈∇TI,K〉 + 〈I,J〉 = 0. (18)

Finally, combining also(17) and (18), one obtains

〈I,J〉 = −e, (19)

onγ, wheree ∈ R is a constant. By a similar argument, one can see that

〈J,J〉 +G〈I, I〉 = d, (20)

onγ, whered is a constant. Now, plug(1)in (19) and (20)to obtain the following proposition.
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Proposition 4. Let γ : [0, 1] → M3(G) be a non-constant curvature regular curve im-
mersed in a real space form of constant sectional curvatureG. Assume thatP ′′(κ) �= 0
and thatγ is a critical point of� in H with non-constant curvature. Then, with the above
notation, we have

e = τ(P ′(κ))2, (21)

d = (P ′′(κ))2κ2
s + (κP ′(κ)− P(κ))2+G(P ′(κ))2+ e2

(P ′(κ))2
. (22)

Observe that the first of these equations can be obtained directly by multiplying(6) by
P ′(κ). Integration of the Frenet equations can be an enormous task even for simple choices
of P(κ) in R3. To simplify the problem we shall need the following result.

Proposition 5. Letγ : [0, 1]→M3(G) be an isometrically immersed curve in a real space
form of constant sectional curvatureG which is a critical point of� acting onH. Then the
extension toM3(G) of Killing fields alongγ,J andI (defined in(1) and(13), respectively)
commute, that is, [I,J] = 0.

Proof. Let us denote by{T, N, B} the Frenet frame alongγ(s) and take of a variation ofγ
with variation fieldI. SinceI is Killing field on M3(G), we have

I〈T,J〉 = 〈[I,J], T 〉 + 〈[I, T ],J〉. (23)

From(14)we have〈T,J〉 = κP ′(κ)− P(κ), then(8) gives

I〈T,J〉(s) = 0. (24)

Moreover, from formula 3 of Lemma 1 in[20] and(13), we have

[I, T ](s) = 0. (25)

Therefore, combining(23)–(25), we obtain

〈[I,J], T 〉(s) = 0. (26)

Using again thatI is Killing field and(13), (14) and (8), we get

0= I〈I,J〉(s) = 〈[I,J], I〉(s) = −P ′(κ)〈[I,J], B〉(s). (27)

On the other hand, since [I,J] is also a Killing field〈∇T [I,J], T 〉 = 0, which along with
(26) implies

〈[I,J], N〉(s) = 0. (28)

We see from(26)–(28) that [I,J](s) = 0 on γ(s). If [I,J] were not identically zero
on M3(G), then γ(s) would be included in a connected component of the set of fixed
points of the one-parameter group associated to [I,J]. This space is a totally geodesic
submanifold ofM3(G) and therefore,γ(s) would not be fully immersed inM3(G) which is a
contradiction. �
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3. Closed critical points in three-spheres

From now on, we assume thatM3(G) = S3(G) and thatP ′′(κ) �= 0. For simplicity,
we take without loss of generalityG = 1 in this section. Assume thatκ(s) is a periodic
solution of (5) and (6)with periodρ and thatγ(s) is the corresponding critical point of
�(γ) = ∫

γ
P(κ) acting on�̃pq. Then, we are going to see that the Killing fieldsJ andI

are naturally related to a system of cylindrical coordinates in the three-sphere where we can
express the closure conditions. Assumingθ, ϕ ∈ (0, 2π), ψ ∈ (0, π/2), we take

X(θ, ϕ, ψ) = ( cosθ cosψ, sinθ cosψ, cosϕ sinψ, sinϕ sinψ), (29)

then the vector fieldsXθ andXϕ are also Killing vector field that obviously commute. By
using the above proposition and after a suitable rotation inR4, we may assume that

I = aXθ + bXϕ, J = ãXθ + b̃Xϕ, (30)

wherea and b are the real numbers. SinceI andJ are linearly independent and since
formulas(19) and (20)imply that〈J,J〉 + 〈I, I〉 and〈J, I〉 are constant onγ(s) and that
〈I, I〉 is not constant onγ(s), we conclude that̃b = ±a, ã = ±b. We may assume that
ã = b, b̃ = a, anda2 > b2 ≥ 0. Hence, from(19), (20), (29) and (30), we get

Xθ = 1

a2− b2
(aI− bJ), Xϕ = 1

a2− b2
(aJ− bI), (31)

and

〈J, I〉 = ab= −e, 〈J,J〉 + 〈I, I〉 = a2+ b2 = d,

〈I, I〉 − 〈J,J〉 = (a2− b2) cos 2ψ. (32)

Thus

cos 2ψ= 1

a2− b2
(2〈I, I〉 − d) = 2

(P ′(κ))2− b2

a2− b2
− 1,

cos2ψ= 1

2
+ 1

2(a2− b2)
(2〈I, I〉 − d) = (P ′(κ))2− b2

a2− b2
,

sin2ψ= 1

2
− 1

2(a2− b2)
(2〈I, I〉 − d) = a2− (P ′(κ))2

a2− b2
, (33)

wherea, b are determined in terms of the integration constantse, d by

a2 = 1
2(d +

√
d2− 4e2), b2 = 1

2(d −
√

d2− 4e2). (34)

Now, we express the curve in terms of the local coordinates(29), γ(s) = X(θ(s), ϕ(s), ψ(s))

andγ ′(s) = T(s) = θ′(s)Xθ + ϕ′(s)Xϕ + ψ′(s)Xψ, then using(34), (31), the last two
equations of(33)and the expressions ofJ andI in terms of the invariants of the curve(14),
(13), one obtains

θ′(s) = 〈T, Xθ〉
‖Xθ‖2 =

〈T, Xθ〉
cos2ψ

= b(κP ′(κ)− P(κ))

b2− (P ′(κ))2
, (35)
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ϕ′(s) = 〈T, Xϕ〉
‖Xϕ‖2 =

〈T, Xϕ〉
sin2ψ

= a(κP ′(κ)− P(κ))

a2− (P ′(κ))2
. (36)

In case we were able to solve(21) and (22)and explicitly obtainκ, then we would obtain the
cylindrical coordinates of the critical curve by integrating again(35) and (36). Interested
as we are in closed critical points, we need(21) and (22)to have periodic solutionsκ.
Assuming this and denoting byρ the period ofκ, the first equation of(33) gives us thatψ
is also periodic having a factor ofρ as period. Combination of this fact with(35), (36)and
the expression ofT in cylindrical coordinates implies the following proposition.

Proposition 6. Assume thatκ(s) is a non-constant periodic solution(with periodρ) of the
Euler–Lagrange equations(5) and(6). Let γ : [0, 1]→ S3(1) be the corresponding curve
in the unit three-sphere(which is a critical point of� acting on�̃pq). Thenγ is a closed
curve inS3(1), if and only if, the progression angles

Λθ(γ) =
∫ ρ

0

b(κP ′(κ)− P(κ))

b2− (P ′(κ))2
ds, (37)

Λϕ(γ) =
∫ ρ

0

a(κP ′(κ)− P(κ))

a2− (P ′(κ))2
ds (38)

are rational multiples of2π (herea andb are given in(34)). Hence, up to multiple covers
of the curve, γ shall close up inn periods of its curvature, if and only if, there existl, m, n ∈
Z (l, m, n) = 1, such thatnΛθ(γ) = 2πl andnΛϕ(γ) = 2πm.

We would like to apply the results obtained so far to concrete choices of the Lagrangian
P(κ) (with P ′′(κ) �= 0). Although in many cases we do not need to get explicit expressions
of the closure conditions in order to show the existence of closed critical points, this will
be required if we wish to classify them.

4. Closed critical points of total curvature type energy functionals

LetS3(G) be the three-dimensional sphere of constant Gaussian curvatureG. We consider
the functional

F(λ)(γ) =
∫

γ

(κ2+ λ)1/2 ds, (39)

whereκ(s) is the curvature ofγ(s) andλ ≥ 0, acting on a suitable space of immersed curves
of S3(G). Actually we assume thatλ > 0 since the caseλ = 0 corresponds to the total
curvature inS3(G) and was studied in[3]. From(5) and (6)we see that the Euler–Lagrange
equations of this functional are

d2

ds2

(
κ

(κ2+ λ)1/2

)
+ κ(κ2− τ2+G)

(κ2+ λ)1/2
− κ(κ2+ λ)1/2 = 0, (40)

d

ds

(
κ2

κ2+ λ
τ

)
= 0. (41)
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4.1. Closed critical curves of constant curvature

We first investigate the existence of closed critical points of constant curvature. Assume
also thatG = 1. If κ is a non-zero constant, then theEuler–Lagrangeequations (40), (41)
reduce to

E(κ, τ) = 1− λ− τ2 = 0, (42)

henceτ is also constant and critical points are helices. Thus, ifλ > 1 we do not have
any critical points with non-zero constant curvatureκ. If 1 = λ (λ equals the curvature
of the sphere), thenτ = 0, and every circle is a critical point for this functional. Assume
0 < λ < 1, then they must be helices satisfying(42). The point is that, helices inS3(1)

can be considered as geodesics of Hopf Tori[5,7]. More precisely, let us consider a helix in
S3(1) of known constant curvature and torsion(κ, τ) and denote byα the circle ofS2(1/2)

with curvature

2 = κ2+ τ2− 1

κ
, (43)

and byMα the Hopf torus obtained as the total lifting ofα via the Hopf map. ThenMα is
a flat torus determined by the latticeΓ = span{(0, 2π), (L, 2A)}, whereL is the length of
α andA is the oriented area enclosed byα in S2(1/2). Thus our helix may be seen as the
geodesic of slope

g = 1− τ

κ
(44)

lying onMα. Then in order the helix to be closed, there must exist a rational numberq �= 0,
such that

g = q

√
22+ 4− 1

22. (45)

So given a real number2 and a rational numberq, we determineg in (45)and we consider
the closed helix whose curvature and torsion(κ, τ) are obtained by solving(43) and (44). In
order to be a critical point of(39), it must satisfy the Euler–Lagrangeequation (42). Hence
the point is to find a real number2 and a rational numberq satisfyingE(κ(2, q), τ(2, q)) = 0.
In our case, this equation gives√

22+ 4

(
1

4

(
1−√1− λ

)
− q2

(
1+√1− λ

))
+ 2q
√

1− λ = 0. (46)

Thus, for anyλ ∈ (0, 1) we see that the non-empty open subsetU(λ) ⊂ R

U(λ) =
(
−
(
1−√1− λ

)2
2λ

,−
(
1−√1− λ

)
2
√

λ

)
∪
((

1−√1− λ
)

2
√

λ
,

1

2

)
(47)

is such that for any rational numberq in U(λ), there exists a unique positive solution2 of
(46)given by

22 = 4
(
(1/4)

(
1−√1− λ

)− q2(1+√1− λ)
)2

(1− λ)q2− ((1/4)
(
1−√1− λ

)− q2
(
1+√1− λ

))2 .
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Fig. 1. Stereographic projections of the closed helicesγ
(0.1)
1/5 andγ

(0.9)
1/9 .

Therefore, one can solve(43)–(45)to get a unique closed helix satisfyingE(κ(2, q), τ(2, q)) =
0. We summarize all the information we have just obtained in the next statement, where
uniqueness is understood modulo isometries and multiple covers of closed curves.

Proposition 7. LetF(λ) : �→ R be the energy functional defined in(39)acting on�, the
space of closed curves inS3(G). Then, we have:

(1) If λ ≥ G, there are no closed critical points of constant curvature.
(2) If 0 < λ < G, the set of closed critical points with constant curvature(and therefore,

also with constant non-zero torsion: helices) forms a rational one-parameter family
determined as indicated above by{γ(λ)

q : q ∈ U(λ) ∩Q}, whereU(λ) is given in(47).

Note that we are assuming our curves to be fully immersed inS3(G), otherwise geodesics
would appear as closed critical points in the above two cases and circles would be also
critical points ifλ = G [4]. Fig. 1shows the stereographic projection fromS3(1) of closed
F(λ)-critical helices, numerically obtained for certain values ofλ andq.

4.2. Critical curves of non-constant curvature

Assume now thatκ is a non-constant function. From the first integrals of theEuler–Lagrange
Eqs. (21) and (22)with P(κ) = (κ2+ λ)1/2, one has

κ2
s (s) =

(
κ2+ λ

λκ

)2

[(κ2+ λ)(dκ2− e2(κ2+ λ))− κ2(Gκ2+ λ2)], (48)

τ(s) = e

(
1+ λ

κ2(s)

)
, (49)

whered ande are the constants of integration. Writingu(s) = κ2(s) and

Q(x) = (d − e2−G)x2+ (λd − 2λe2− λ2)x− e2λ2. (50)
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Eq. (48)becomes

u2
s =

4

λ2
(u+ λ)2Q(u). (51)

To find closed critical curves, we need this equation to have periodic solutions. This happens
precisely if(e, d) belongs to the plane regionD, determined by the following conditions:

0 < e2 < G− λ, (52)

λ+ 2e
√

G− λ < d < e2+G. (53)

From(52)we see that in order to expect closed critical points we must have 0≤ λ < G.

Proposition 8. For anyλ ≥ G, there exist no non-constant curvature closed critical points
ofF(λ) in S3(G).

Thus from now on we may assume thatλ is a fixed real number satisfying 0< λ < G and
that the integration constants verify(e, d) ∈ D. ThenQ(u) has two real rootsα > β > 0
and (using for example, formula 2.266 of[15]) we see that

u
(λ)
d,e(s) = (κ

(λ)
d,e)2(s) = 2λ(G− λ)

(2G− d − λ)−√ϑ sin(2
√

G− λs− π/2)
− λ, (54)

whereϑ = (d − λ)2− 4e2(G− λ), is a two-parameter family of periodic solutions of(51)
with initial conditionu

(λ)
d,e(0) = β. Roots ofQ(u) give the minima and maxima of the above

solutions. They are reached atu
(λ)
d,e(0) = β andu

(λ)
d,e(π/2

√
G− λ) = α, respectively and

they can be expressed in terms of the(e, d)-parameters as

α = λ(d − 2e2− λ)+ λ
√

ϑ

2(e2− d +G)
, β = λ(d − 2e2− λ)− λ

√
ϑ

2(e2− d +G)
. (55)

Now, for any periodic functionκ(λ)
d,e given as in(54), we obtain another periodic function

τ
(λ)
d,e just by substitution in(49). Then there exists a unique (up to isometries) curveγ

(λ)
d,e in

the unit sphere having them as curvature and torsion functions, respectively. Therefore, we
have proved the following proposition.

Proposition 9. For any0 < λ < G, the collection{γ(λ)
d,e : (e, d) ∈ D} is a two-parameter

family of curves inS3(G), whose curvature and torsion(given respectively in(54) and
(49)) are periodic solutions of the Euler–Lagrange equations corresponding to the energy
functionalF(λ) (40)and(41).

There is a more natural way of writing the last proposition. Given any pair of positive
real numbers(β, α), α > β > 0, one may see that the parameters(e, d) defined by

e2 = (G− λ)αβ

(λ+ α)(λ+ β)
, d = (e2+G)− e2λ2

αβ
, (56)
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verify (52) and (53). Combination of this with(55)allow us to express everything in terms of
(β, α). Using the same symbol for the regionD expressed with respect to the new parameters
(β, α), we haveD = {(β, α) : α > β > 0} and the following corollary.

Corollary 10. For any0 < λ < G, there exists a two-parameter familyR(λ)
β,α = {γ(λ)

β,α :

α > β > 0} of curves inS3(G) whose curvature and torsion functions, given respectively
by

(κ
(λ)
β,α(s))2 = 2(α+ λ)(β + λ)

(α+ β + 2λ)− (α− β) sin(2
√

G− λs− π/2)
− λ, (57)

τ
(λ)
β,α =

√
(G− λ)αβ

(λ+ α)(λ+ β)

(
1+ λ

(κ
(λ)
β,α(s))2

)
(58)

are periodic solutions of the Euler–Lagrange equations(40) and(41) for the energy func-
tional F(λ). Moreover

√
β and

√
α are the minima and the maxima of the curvature, re-

spectively.

Members ofR(λ)
β,α are candidates to be closed critical points ofF(λ). Without loss of

generality we may assumeG = 1. Then by usingProposition 6with P(κ) = (κ2 + λ)1/2,
we have the following proposition.

Proposition 11. Let γ
(λ)
β,α be a curve inS3(1) belonging toR(λ)

β,α andρ(β, α) the period of

its curvatureκ
(λ)
β,α(s). Thenγ

(λ)
β,α is a closed critical point ofF(λ), if and only if, the angular

progression ofθ(s) andϕ(s) in one period of the curvature

9ϕ(γ
(λ)
β,α) =

∫ ρ(β,α)

0

(
λa

1− a2

)
(κ2+ λ)1/2

κ2− λa2/(1− a2)
ds, (59)

9θ(γ
(λ)
β,α) =

∫ ρ(β,α)

0

(
λb

1− b2

) (
κ2+ λ

)1/2

κ2− λb2/(1− b2)
ds (60)

are rationally related to2π (herea andb are given in(34)and to simplify the notation, we
are usingκ instead ofκ(λ)

β,α in the above formulas).

If we want to pick the closed critical curves out ofR(λ)
β,α, we must check the closure

conditions given inProposition 11. For any(β, α) ∈ D, let κ
(λ)
β,α(s) be the corresponding

non-constant periodic solutions of(40), (41)given in(57), (58), they determine a curveγ(λ)
β,α

in S3(1) belonging toR(λ)
β,α. Then we define the mapΛ : D→ R2

Λ(β, α) =
(

Λϕ(γ
(λ)
β,α)

2π
,

Λθ(γ
(λ)
β,α)

2π

)
.

We remind thata andb are defined in terms of the integration constants(e, d) in (34) (and
so in terms ofβ andα, (55)), then one may use this and(52), (53)to see that 1> a > b > 0
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and thatΛ is differentiable. To better describe the behavior ofΛθ andΛϕ we shall introduce
two new parameters(r = r(β, α), w = (β, α)) that will simplify the expressions ofΛθ and
Λϕ. We define(w, r) by

w = λb2

1− b2
, r = λa2

1− a2

with a andb as given in(34). In terms of(w, r),D is defined by

D =
{

(w, r) ∈ R2

w
∈ (0, 1− λ), r > rh(w)

}
, (61)

where

rh(w) = (
√

w+√1− λ(λ+ w))2

(1− λ− w)2
. (62)

By using(34), one can see that the integration constants(e, d) may be rewritten as

d = w

w+ λ
+ r

r + λ
, e2 = wr

(w+ λ)(r + λ)
, (63)

and the polynomial

Q(u) = (d − 1− e2)(u− α)(u− β), (64)

defined in(50)becomes

Q(u) = − λ2

(w+ λ)(r + λ)
(u2− u(r + w− (λ+ r)(λ+ w))+ rw) (65)

with (w, r) ∈ D. We notice here some interesting relations obtained from(64) and (65)that
will be useful later

Q(w)=−λ2w, αβ = wr, Q(r) = −λ2r,

α+ β=w+ r − (w+ λ)(r + λ), (α+ λ)(β + λ) = (1− λ)(r + λ)(w+ λ).

(66)

Since κ
(λ)
β,α is the periodic curvature ofγ(λ)

β,α, the functionu
(λ)
β,α = (κ

(λ)
β,α)2 has period

(2π/
√

1− λ), increases monotonically between its minimumu
(λ)
β,α(0) = β and its max-

imumu
(λ)
β,α(π/

√
1− λ) = α, and it is even abouts = (π/

√
1− λ). Hence, combining(51),

(63)andProposition 11, we have

Λθ(γ
(λ)
β,α) = 2

∫ α

β

dθ

du
du = (w+ λ)

√
w(r + λ)

∫ α

β

du

(u− w)
√

(u+ λ)(α− u)(u− β)
,

and

Λϕ(γ
(λ)
β,α) = 2

∫ α

β

dϕ

du
du = (r + λ)

√
r(w+ λ)

∫ α

β

du

(u− r)
√

(u+ λ)(α− υ)(u− β)
.
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Now, using 3.137.6 of[15], one gets

Λθ(γ
(λ)
β,α) = 2

(λ+ w)w1/2(λ+ r)1/2

(α− w)(λ+ α)1/2
�

(
π

2
,

α− β

α− w
,

√
α− β

α+ λ

)
, (67)

and

Λϕ(γ
(λ)
β,α) = 2

(λ+ r)r1/2(λ+ w)1/2

(α− r)(λ+ α)1/2
�

(
π

2
,

α− β

α− r
,

√
α− β

α+ λ

)
(68)

with �(π/2, υ, p) standing for theComplete Elliptic Integral of Third Kindof modulus
p = √(α− β)/(α+ λ).

We express these two integrals in terms of the Heuman’s Lambda function�0. From
(64) and (66)we see thatr > α > β > w > 0, so

α− β

α− r
< 0 and p2 ≤ α− β

α− w
≤ 1,

conditions that allow us to write theComplete Elliptic Integral of Third Kindin terms of
theHeuman’s Lambdafunction[9]. Then, straightforward substitution into(67), (68) and
some simplification lead to the following expressions forΛθ(γ

(λ)
β,α), Λϕ(γ

(λ)
β,α), which we

also denote byΛθ(β, α) andΛϕ(β, α), respectively

Λθ(β, α) = Λθ(γ
(λ)
β,α) = π�0(ξ, p),

and

Λϕ(β, α) = Λϕ(γ
(λ)
β,α) = −2r1/2 (λ+ w)1/2

(λ+ α)1/2
K(p)− π�0(υ, p),

whereξ = arcsin((λ+w)1/2)/(λ+β)1/2), υ = arcsin((λ+α)1/2)/((λ+ r)1/2), �0(υ, p)

is the Heuman’s Lambda function of modulusp = √(α− β)/(α+ λ) and argumentυ, and
K(p) is theComplete Elliptic Integral of First Kindof modulusp.

Let us denote byL1 ∪ L2 the frontier ofD, whereL1 = {(β, α)/β = 0} andL2 =
{(β, α)/β = α} (they can be written respectively in terms of(w, r) as{(0, r)/r ≥ (λ2/(1−
λ))} and{(w, rh(w))/w ≥ 0}, rh(w) given in(62)). We continuously extendΛ toL1∪L2.
Taking limits, one obtains

Λϕ(0, α) = lim
β→0

Λϕ(β, α) = −2
√

λr√
(1− λ)(λ+ r)

K(p)− π�0( arcsin
√

1− λ, p).

Thus we have

lim
p→0

Λϕ(0, α) = lim
α→0

Λϕ(0, α) = −π√
1− λ

,

and

lim
p→1

Λϕ(0, α) = lim
α→+∞Λϕ(0, α) = −∞.
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Actually, numeric computations show that for anyλ ∈ (0, 1), Λϕ(0, α) decreases mono-
tonically from(−π/

√
1− λ) to−∞ asα increases from 0 to+∞. MoreoverΛθ(0, α) =

limβ→0 Λθ(β, α) = π and

Λϕ(α, α) = lim
β→α

Λϕ(β, α)=−π

(
(1− λ)

(
1−

(
w

1− λ

)1/2
))−(1/2)

,

Λθ(α, α)= lim
β→α

Λθ(β, α) = π

(
1−

(
w

1− λ

)1/2
)1/2

with w ∈ [0, 1− λ). Therefore, we have seen that

Λ(L1) =
{(

x,
1

2

)
; x ≤ − 1

2
√

1− λ

}
,

and

Λ(L2) =
{

(x, y) ∈ R2;0 < y ≤ 1

2
and xy= − 1

4
√

1− λ

}
.

Finally, observe that the curve defined byd = e2 + G in the first description ofD (52)
and (53), corresponds to the situation in which the curvatureα grows toward+∞. In
this case, from the relations betweenr and α that can be obtained from(66), one gets
limα→+∞Λϕ(β, α) = −∞ and limα→+∞Λθ(β, α) = 2 arcsin((1− w/(1− λ))1/2), that
varies fromπ to 0 asw moves from 0 to 1−λ, and soΛθ/2π varies from (1/2) to 0. Hence,
we obtain (seeFig. 2)

Λ(D) =
{

(x, y); x < 0 and
1

2
> y > − 1

4x
√

1− λ

}
. (69)

Non-constant solutions of the Euler–Lagrange equations for the functionalF(λ) can be in-
dexed in the regionΛ(D) and they are periodic functions. Hence, critical curves for the dif-
ferent boundary problems included inH, are indexed in subsets ofΛ(D). By Proposition 11,

Fig. 2.Λ(D) = {(x, y) : x < 0, 1/2 > y > −1/(4x
√

1− λ)}.
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a curveγ
(λ)
α,β ∈ R(λ)

α,β will be a closed critical point ofF(λ), if and only if, Λ(α, β) ∈ Q2

and we see from(69) that Λ(D) ∩ Q2 �= ∅ and then the family of closed critical points
of F(λ) is indexed on it. This determines completely the space of closed critical points of
F(λ) in S3(1). It can be parameterized (modulo multiple covers of the curves and isometries
of the sphere) in the plane regionΛ(D) ∩ Q2. Points in the upper borderΛ(L1) ∩ Q2

represent critical points ofF(λ) that lie in S2(1)(β = 0 ⇔ e = 0 ⇔ τ = 0) and
have been studied in[4], while points in the lower borderΛ(L2) ∩ Q2 correspond to
closed critical helices fully immersed inS3(1) (α = β ⇔ d = λ + 2e

√
G− λ) and

we described them inProposition 7. Observe that the intersection of the two borders, the
“vertex” (−1/(2

√
1− λ), 1/2), is associated to geodesics ofS3(1). Points inside the re-

gion Λ(D) ∩ Q2 correspond to non-constant curvature closed critical curves fully im-
mersed inS3(1). This describes all the closed critical curves ofF(λ) in S3(1) (multiple
covers of a closed elastica correspond to the same point ofΛ(D) ∩Q2). Then, we have in
particular.

Proposition 12. For anyλ ∈ (0, 1) and for any choice of natural parametersn, m, l ∈ N

satisfying(n, m, l) = 1, 0 < l < n/2 andn2 < 4ml
√

1− λ, there exists a closed critical
point γ

(λ)
n,m,l ofF(λ) in S3(1) that closes up aftern periods of its curvature, m trips around

the“equator”ofxϕ andl trips around the“equator”ofxθ. For any choice of natural numbers

verifying the above conditions, a closed critical pointγ(λ)
m,n,l is totally determined in(88),

(89), (57) and (58). Every closed critical point ofF(λ) in S3(1) can be obtained in this
way.

Fig. 3 shows the stereographic projection fromS3(1) of closed non-constant curvature
F(λ)-critical curvesγ(λ)

n,m,l, numerically obtained for certain values ofλ, n, m andl.

Fig. 3. Stereographic projections of the closedF(λ)-critical curvesγ(0.5)
36,47,7 andγ

(0.3)
45,40,7.
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5. Closed elastic curves

Langer and Singer discovered that there is a cylindrical coordinate system naturally
associated to an elastic curve (P(κ) = κ2+λ) in R3 [21]. They used it to explicitly integrate
the Frenet equations of an elastica and to describe the closed (non-free) elastic curves
in Euclidean three-space. In particular there are no closed free elastic curves inR3. On
the other hand, the cylindrical coordinate system(29) was used in[22] to show that the
elastic curves coordinates (P(κ) = κ2 + λ) in S3(G) might be obtained with the aid of
elliptic functions. However, they did not explicitly integrate the equations nor considered
the problem of closed critical elasticae in the three-sphere. We shall deal with this issues in
this section. We consider the elastic functional acting on a suitable spaceH of immersed
curves inS3(G)

F(γ) =
∫

γ

κ2 ds, (70)

whereκ(s) is the curvature ofγ(s). A curve γ ∈ H is said to be an (free) elastic curve
(or simplyelastica) if it is a critical point ofF. Therefore it satisfies the Euler–Lagrange
equations (5) and (6)with P(κ) = κ2

2κss+ κ3+ 2κ(G− τ2) = 0, (71)

4
d

ds
(τκ2) = 0. (72)

5.1. Closed critical elastica of constant curvature

We first investigate the existence of closed critical curvesγ of constant curvature. By
using a similar argument to that ofSection 4.1one can determine the closed elasticae
constant curvature (taker = 2 in Proposition 16). Since we are considering curves fully
immersed inS3(1), geodesics, which are global minima ofF, do not appear there.Fig. 4
shows the stereographic projection of the elastic helices corresponding toq = 1 and 1/32.

Fig. 4. Stereographic projections of the closed elastic helicesγ1 andγ1/32.
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5.2. Closed critical elasticae of non-constant curvature

Assume now thatκ is a non-constant function. By a direct computation or by applying the
more generalProposition 4, we get the first integrals of theEuler–Lagrangeequations (21)
and (22)

16κ2κ2
s (s) = 4dκ2− 16Gκ4− 4κ6− e2, (73)

τ(s) =
(

e

4κ2(s)

)
, (74)

whered ande are the constants of integration. Writingu(s) = κ2(s) and

Q(x) = −(x3+ 4Gx2− dx+ 1
4e2). (75)

Eq. (73)becomes

u2
s = Q(u) = −u3− 4Gu2+ du− 1

4e2. (76)

In order to find closed critical curves, we need this equation to have periodic solutions.
ThenQ(u) must have two positive rootsα > β > 0 and a negative one,α0, such that
Q(u) = (α− u)(u− β)(u− α0), where constants of integration and roots are related by

α0 = −(4G+ α+ β), (77)

e2 = 4(4G+ α+ β)αβ, (78)

d = (α+ β)(4G+ α+ β)− αβ. (79)

Conversely, for any couple(β, α) with α > β > 0, we can use the above relations to
obtain constantsd > 0 ande > 0 in such a way thatα andβ are positive roots of the
polynomialQ(u) defined in(76). So if we look for the solutionu(s) of (76) with initial
conditionu(0) = β, then using for example formula 3.131:6 of[15], we see that it is a
periodic functionud,e(s) = uβ,α(s) given by

uβ,α(s) = κ2
β,α(s) = α− (α− β)sn2(1

2(
√

α− α0)s−K(p), p) (80)

with K(p) standing for the Complete Elliptic Integral of the First Kind of modulusp =√
(α− β)/(α− α0). The minima and the maxima of the above solutions are reached at

uβ,α(0) = β anduβ,α(2/(
√

α− α0)K(p)) = α, respectively. Therefore, we have proved
the following proposition.

Proposition 13. There exists a two-parameter familyRβ,α = {γβ,α : α > β > 0} it of
curves inS3(G) whose curvature and torsion functionsκβ,α andτβ,α, given respectively in
(80)and(74), are periodic solutions of the Euler–Lagrange equations(71)and(72) for the
elastic energy functionalF. Moreover

√
β and

√
α are the minima and the maxima of the

curvature, respectively.

Members ofRβ,α are candidates to be closed critical points ofF. Without loss of gen-
erality we may assumeG = 1. Then by usingProposition 6with P(κ) = κ2, we have the
following proposition.
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Proposition 14. Let aγβ,α be a curve inS3(1) belonging toRβ,α andρ(β, α) the period
of its curvatureκβ,α(s). Thenγβ,α is a closed critical point ofF if and only if, the angular
progressions ofθ(s) andϕ(s) in one period of the curvature

9θ(γβ,α) = −b

4

∫ ρ(β,α)

0

(
κ2

κ2− (b2/4)

)
ds, (81)

9ϕ(γβ,α) = −a

4

∫ ρ(β,α)

0

(
κ2

κ2− (a2/4)

)
ds (82)

are rationally related to2π (herea andb are in (34) and to simplify the notation, we are
usingκ instead ofκβ,α in the above formulas).

If we want to determine the closed critical curves ofRβ,α, we must check the closure
conditions given inProposition 14. Take the regionD = {(β, α);α > β > 0}. For any
(β, α) ∈ D, let κβ,α(s) be the corresponding non-constant periodic solutions of(71), it
determines a curveγβ,α in S3(1) belonging toRβ,α. Since we can exchange(β, α) and
(e, d) by means of(78), (79), we indistinctly denote this curve byγe,d or γβ,α. Then we
define the mapΛ : D→ R2

Λ(β, α) =
(

Λϕ(γβ,α)

2π
,

Λθ(γβ,α)

2π

)
.

Again, we have thata andb are related to the constants of integration(e, d) in (34) (and so
they are toβ andα (78), (79)). Thus we have from(77), (78), (79) thatb2/4 < β, α < a2/4
and thatΛ : D→ R2 is differentiable.

We define new parameters(w, r) by

w = 1
4b2 and r = 1

4a2.

Then, by using(34), one can see that the integration constants(e, d) may be rewritten as

d = 4(w+ r), e2 = 16wr, (83)

and the polynomial defined in(75)becomes

Q(u) = −(u3+ 4(u− r)(u− w)) (84)

with r > α > β > w > 0. We note now some interesting relations obtained from(75) and
(84) that will be useful later

Q(w) = −w3 < 0, (85)

Q(r) = −r3 < 0, (86)

and

4wr = −α0αβ, 4(w+ r) = −(αβ + α0(α+ β)). (87)
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The functionuβ,α = κ2
β,α(s) has period 4/(

√
α− α0)K(p), increases monotonically be-

tween its minimumuβ,α(0) = β and its maximumuβ,α(2/(
√

α− α0)K(p)) = α, and it is
even abouts = 2/(

√
α− α0)K(p). Hence, using(76) and (83)in (81) and (82), we have

Λθ(γβ,α) = 2
∫ α

β

dθ

du
du = −w1/2

∫ α

β

u du

(u− w)
√

(α− u)(u− β)(u− α0)
,

and

Λϕ(γβ,α) = 2
∫ α

β

dϕ

du
du = −r1/2

∫ α

β

u du

(u− r)
√

(α− u)(u− β)(u− α0)
.

Thus, using 3.137.6 of[15], one gets

Λθ(γβ,α) = −2

(
w

α− α0

)1/2
(

K(p)+ w

α− w
�

(
π

2
,

α− β

α− w
,

√
α− β

α− α0

))
, (88)

and

Λϕ(γβ,α) = −2

(
r

α− α0

)1/2
(

K(p)+ r

α− r
�

(
π

2
,

α− β

α− r
,

√
α− β

α− α0

))
(89)

with �(π/2, υ, p) standing for theComplete Elliptic Integral of Third Kindof modulus
p = √(α− β)/(α− α0) andK(p) represents theComplete Elliptic Integral of the First
Kind of modulusp.

Now we express these two integrals in terms of the Heuman’s Lambda functionΛ0. From
(84) and (85)we see thatr > α > β > w > 0, so

α− β

α− r
< 0 and p2 ≤ α− β

α− w
≤ 1,

conditions that allow us writing theComplete Elliptic Integral of Third Kindin terms of the
Heuman’s Lambdafunction[9]. Then, straightforward substitution and simplification into
(88), (89), lead to the following expressions forΛθ(γβ,α), Λϕ(γβ,α), which we also denote
by Λθ(β, α) andΛϕ(β, α), respectively

Λθ(γβ,α) = − 2w1/2

(α− α0)1/2
K(p)− π�0(ξ, p), (90)

and

Λϕ(γβ,α) = − 2r1/2

(α− α0)1/2

(
1− r

r − β

)
K(p)− π(�0(υ, p)− 1), (91)

whereξ = arcsin((w− α0)/(β − α0))1/2 andυ = arcsin((r − α)/(r − β))1/2.
We continuously extendΛ to the frontier ofD. Let L1 = {(0, α)/α ≥ 0} andL2 =
{(α, α)/α ≥ 0} be the frontier curves. Taking limits, one obtains

Λϕ(0, α) = lim
β→0

Λϕ(β, α) = −π

[
�0

(
arcsin

√
r − α

r
, p

)
− 1

]
,
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that decreases monotonically fromπ to 0, asα increases from 0 to+∞, and

Λθ(0, α) = lim
β→0

Λθ(β, α) = −π.

Thus, we have seen that

Λ(L1) =
{(

x,−1

2

)
;0 ≤ x ≤ 1

2

}
.

Moreover,

Λϕ(α, α) = lim
β→α

Λϕ(β, α) = r1/2

2(r − α)

α

(α− α0)1/2
π, (92)

Λθ(α, α) = lim
β→α

Λθ(β, α) = w1/2

2(w− α)

α

(α− α0)1/2
π. (93)

Therefore, combining(92), (93), (84), (85) and (87)with α = β, we get

Λ(L2) =
{

(x, y) ∈ R2;− 1√
2
≤ y ≤ −1

2
, x > 0 and x2+ y2 = 1

2

}
.

Finally, by using the relations betweenr andα that can be obtained from(86), (87) and
(90), (91), one gets limα→+∞Λθ(β, α) = −π and limα→+∞Λϕ(β, α) = 0, so

limα→+∞Λ(β, α) = (0,−1
2).

Then, we have that (seeFig. 5)

Λ(D) =
{

(x, y); x2+ y2 <
1

2
, x > 0 and y < −1

2

}
.

Non-constant solutions of the Euler–Lagrange equations for the elastic functionalF in S3(1)

can be indexed in the regionΛ(D) and they are periodic functions. Hence, elastic curves
for the different boundary problems included inH, are indexed in subsets ofΛ(D). By

Fig. 5.Λ(D) = {(x, y); x2 + y2 < 1/2, x > 0 and y < −(1/2)}.
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Fig. 6. Stereographic projections of the closed elasticaeγ75,22,47 andγ150,30,97.

Proposition 14, a curveγβ,α ∈ Rβ,α will be closed if and only ifΛ(β, α) ∈ Q2. Hence, in
the above setting (seeFig. 5), closed non-constant curvature elastic curves fully immersed
in S3(1) are indexed inΛ(D)∩Q2. Points in the upper boundary of this region,Λ(L1)∩Q,
represent closed elastic curves that lie inS2(1) [20]. Here, geodesics correspond to the
“vertex” of the region,((1/2),−(1/2)). Points in the lower boundary,Λ(L2)∩Q, correspond
to closed elastic helices fully immersed inS3(1). These are all the closed elastic curves in
S3(1) (multiple covers of a closed elastica correspond to the same point ofΛ(D) ∩ Q2).
Then, we have in particular the following proposition.

Proposition 15. For any choice of natural parametersm, n, l ∈ N satisfying(n, m, l) =
1, 0 < m < n/2 < l < n/

√
2 andm2 + l2 < n2/2, there exists a closed elasticaγn,m,l

fully immersed inS3(1) that closes up aftern periods of its curvature, m trips around the
“equator” of xϕ and l trips around the“equator” of xθ. For any choice of natural numbers
verifying the above conditions, a closed critical pointγn,m,l is totally determined in(80)
and(74). Every closed elastica inS3(1) can be obtained in this way.

Fig. 6 shows the stereographic projection fromS3(1) of closed non-constant curvature
elastic curvesγn,m,l, numerically obtained for certain values ofn, m andl.

5.3. Remark

Free elastic helices given inProposition 16with r = 2, were used in[5] to construct
examples of constant mean curvature Chen–Willmore tori in the anti-De Sitter spaceH4

1. In
a similar way, the above proposition will provide examples of non-constant mean curvature
Chen–Willmore tori inH4

1.
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6. Closed hyperelastic curves

Assume now that we havecurvature energyfunctionals of the typeFr(γ) = ∫
γ

κr ds,

with r a natural number greater than 1, acting on closed curves ofS3(G). The argument to
prove the existence of closed constant curvature critical curvesγ of Fr (free hyperelastic
curves) goes much in the line of the previous cases. The following proposition was obtained
in [5].

Proposition 16. For any natural numberr ≥ 2, the set of constant curvature closed critical
curves of

∫
γ

κr ds in S3(G) (and therefore, also with constant non-zero torsion: helices)

forms a rational one-parameter family{γq : q ∈ Q+ − {1/2}}. Moreover, they can be
determined by a similar procedure to that ofSection 4.1.

As for the non-constant curvature case, the Euler–Lagrangeequations (5), (6) give

r(r − 1)(r − 2)κr−3κ2
s + r(r − 1)κr−2κss+ r(κ2+ 1)κr−1− κr+1 = e2

r3κr−3
(94)

with e ∈ R. Considering it as an autonomous system, the equation of orbits can be deduced
from its first integrals (Proposition 4) which in this case turns out to be

r2(r − 1)2κ2r−4y2 = d − (r − 1)2κ2r − r2κ2r−2− e2

r2κ2r−2
(95)

with d > 0. We denote byq(κ) = dr2κ2r−2 − r2(r − 1)2κ4r−2 − r4κ4r−4, thenq(x) has
a positive rootε. Denote byδ the maximum ofq(x) between 0 andε. Hence, any couple
d, e ∈ R, satisfying 0< d, 0 < e2 < δ, gives rise to a periodic orbit and, therefore,
(94) has positive periodic solutions. By substitution of one of these periodic solutions in
Proposition 6one might see that the functions(37) and (38)moves continuously asd, e

does in the specified range of variation. Therefore, they hit rational multiples of 2π and we
would find closed critical points.

Proposition 17. For any natural numberr ≥ 2, there exist closed free hyperelastic curves
of non-constant curvature inS3(G).

Observe that this result is not true inS2(G) [4].
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